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Single-channel "p i lo t"  manual control o u t p u t  i n  cl osed-loop tracking 

tasks i s  modeled i n  terms of l i n e a r  d i scre te  t ransfer  functions which 

a r e  parsimonious and guaranteed s table .  

found by applying a modified superposition time se r i e s  generation 

technique. 

which prewhitens the input and a projective ( l e a s t  squares) f i t  of pulse 

response estimates i s  used t o  guarantee ident i f ied  model s t a b i l i t y .  

The t ransfer  functions are 

A Levinson-Durbin algorithm i s  used t o  determine the f i l t e r  

Results from two case studies are  compared t o  previous f i n d i n g s ,  

where the source of d a t a  are r e l a t ive ly  short  data records, approximately 

25 seconds long. 

sed and analyzed. I t  i s  concluded t h a t  single-channel time ser ies  

control ler  modeling i s  feasible  on short records, and tha t  i t  is 

important for the analyst  t o  determine a c r i t e r i o n  for  "best time domain 

f i t "  which allows association of model parameter values, such as pure 

time delay, w i t h  actual physical a n d  physiological constraints.  The 

''purpose" of the  modeling i s  t h u s  paramount. 

I 

Time delay e f f ec t s  and p i l o t  seasonal i t ies  are  discus- 
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S H O R T  T I T L E :  A U T O R E G R E S S I V E  P I L O T  MODELS 
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NOMENCLATURE 

numerator discrete  polynomial i n  z 

coef f ic ien t  o f  z-k i n  a ( z )  

denominator discrete  polynomial i n  z 

coef f ic ien t  of. z - ~  i n  b ( z )  

d i sc re t e  p i l o t  model pulse response sequence in 

operation z 

e r ro r  displayed t o  p i l o t  a t  i n s t an t  t 

coef f ic ien t  o f  z-k i n  g ( z )  

p i l o t  t ransfer  function as  a r a t i o  of polynomials 

independent, ident ica l ly  d i s t r ibu ted  

lag  implying "kn" seconds 

p i l o t  gain expressed i n  degrees per degree 

t o t a l  points avai lable  

p i l o t  i n p u t  uncorrelated w i t h  y ( t )  i n  degrees a t  

i n s t a n t  t 'Q 

white noise sequence ( i . i . d . )  a t  i n s t an t  t 

controlled element output signal i n  degrees pitch 

angle a t  instant  t 

sample interval ( seconds) 

p i l o t  output in degrees of elevator  deflection a t  

i n s t an t  t 
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T 

V 

number of sample t i m e s  i n  pure time delay 

transformed frequency 

frequency 

prewhitening f i l t e r  i n  z 
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1. I NTRODUCTI ON 

The key question of how the human being will be  inserted i n  the 

control loop of complex processes remains an issue throughout ou r  society 

(Rosenbrock, 1983), b u t  nowhere i s  i t  more urgent than i n  f l i g h t  control 

systems design and analysis  (Harper, 1983). The f a c t  t ha t  a p i l o t  of 

a modern a i r c r a f t  i s  becoming a sophisticated systems monitor (Rouse, 

1983) i n  no way implies his demise as  a cont ro l le r  (Rouse, 1980; 

Sheridan, 1974), and a fundamental assumption in t h i s  work is  t h a t  the 

interact ion between man and machine should be understood much be t t e r  

than i t  is  today (Palmer, 1983). 

A1 though describing function (McRuer, 1965) and optimal control 

(Kleinman, 1969-1974) pi1 o t  models have been ingeniously used t o  provide 

i n s i g h t  i n to  p i lo t ing  strategy (Schmidt, 1979; Bacon, 1983; Hess, 1977), 

they a re  now supplemented w i t h  p i l o t  models derived from the  emerging 

f i e l d  of time series analysis.  

i s  r e l a t ive ly  new and offers tremendous potential f o r  discerning key 

system cha rac t e r i s t i c s  and relationships,  such as  the actual e f f e c t  of 

i n s t a b i l i t i e s  (Goto, 1974), p i l o t  s t r e s s  (Shinners, 1974), o r  task 

e f f ec t s  (Agarwal , 1980). 

Time se r i e s  modeling of p i l o t  behavior 

Unfortunately, many time s e r i e s  f i t t i n g  techniques have tended t o  

the "bag of t r i c k s "  approach i n  ident i f ica t ion  (Anstrom, 1971). The  

key question is no longer parsimony of parameters, well established by 

Breddermann e t  a1 (1978), bu t  of ident i f ied model s t a b i l i t y  and the 
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model's p rac t ica l  application i n  analysis (Baron, 1980). Shinner (1974) 

ser iously discussed the closed-loop iden t i f i ca t ion  problem, b u t  the 

manipulation of t r ans fe r  functions i n  his f i t t i n g  procedure contains no 

guarantee  of f i n a l  model s t ab i l i t y .  The primary purpose of this work 

i s  t o  present a theore t ica l ly  sound closed-loop f i t t i n g  procedure, s t i l l  

based f i rmly  i n  t he  common sense methods of Box and Jenkins (1976), which 

guarantees model s t a b i l i t y  without sacr i f ic ing  model accuracy, and thus 

r e l a t e  i den t i f i ed  model character is t ics  , as opposed t o  parameters them- 

selves (Hoh, 1982), with classical  frequency response resu l t s .  
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2. MODEL 

The l inea r  d i scre te  closed-loop model s t ruc ture  is  shown i n  Figure 1. 

Each block represents a d i scre te  pulse response sequence which, when 

convolved with the d iscre te  i n p u t  sequence, yields  the discrete  output 

sequence. Stable pulse sequences, even though i n f i n i t e  in duration, 

eventually m u s t  decay for  a s tab le  system. 

expressed a s  a r a t i o  of polynomials, s t a b i l i t y  is  guaranteed if  the 

denominator roots a re  l e s s  i n  magnitude than one. 

fy  the pulse response sequence g ( z )  a n d  approxiriiate i t s  discrete  ( z  

domain) t r ans fe r  function from actual data s e t s  { 6 ( t ) > ,  ( y ( t ) ) ,  and ( W ( t ) >  

which a r e  equispaced i n  time w i t h  t h e i r  means removed. 

When the pulse sequence is  

The goal i s  to  ident i -  

P 

The assumptions a r e  model 1 inear i ty ,  time invariance, causal i ty ,  

uncorrelated i n p u t s  W ( t )  and R ( t ) ,  and prewhitenable input W ( t ) ;  t h a t  

is, W ( t )  i s  a l i nea r  func t ion  of previous values p l u s  a white noise 

''shock. 'I Previous values are mathematically 1 inked by the backward 

s h i f t  operator z (-1 1 . 
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3 .  MODIFIED SUPERPOSITION T E C H N I Q U E  

First, every signal i n  Figure 1 is  decomposed conceptually into a 

p a r t  1 inearly correlated w i t h  command disturbance W ( t ) ,  and the remainder 

uncorrelated w i t h  W ( t ) .  

which is correlated w i t h  W(t), and of y R ( t ) ,  considered the e f f e c t  of 

an additional unknown i n p u t  R ( t ) ,  termed ''remnant," uncorrelated w i t h  

W ( t ) .  

For example, output y ( t )  i s  the sum of y L ( t ) ,  

The pulse response to  be found r e l a t e s ,  f o r  constant sampling 

interval "A" seconds, the l inear ly  correlated p i l o t  output a , ( t )  t o  the 

correlated e r ror  signal e L ( t ) ;  t h a t  i s ,  

T h i s  pulse response may be expressed a s  an i n f i n i t e  sequence or  a s  a 

ratio o f  polynomials: 

where 

and 

a (z )  = (1 + k=a 1 akz-k) ' 

k = l  

k = s  

k = l  
b ( z )  = (1 + 1 bkz-k )  

s > R imposed cons t ra in t  - 

( 3 )  



I f  the integer " k "  in Equa t ion  ( 2 )  i s  allowed a l l  values ( -= ,. k .  t-), 

then equation ( 2 )  defines the d iscre te  t r ans fe r  function relat ing the 

z-transform of i n p u t  sequence eL(  t )  t o  the z-transform of output sequence 

6 L ( t )  (Franklin and Powell, 1980, p.  15). 

Although the s ignals  $(t)  and e L ( t )  a r e  not d i r e c t l y  avai lable ,  

they must be "generated" i f  loop closure e f f e c t s  a r e  properly taken into 

account. To do t h i s  apply superposition t o  s igna ls  y ( t )  and W ( t )  of 

Figure 1: 

Since W ( t )  i s  prewhitenable (defined above) and uncorrelated w i t h  

R ( t )  the  cross correlat ion ident i f ica t ion  technique of Box and Jenkins 

(de t a i l s  i n  Appendix) may be applied t o  f ind an estimate of the i n i t i a l  

portion of the pulse response sequence g , ( z ) ,  between y ( t )  and W(t). 

a,(z)  and bl(z)  may be determined a s  shown i n  the  sect ion on model s t a b i l i t y ,  

such t h a t  

Then 

The essence of modified superposition i s  now t o  generate the time 

se r i e s  y ( t )  u s i n g  the autoregressive re la t ion  L 

b l ( Z ) Y J t )  = a+z)W(t )  
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where a ( z )  a n d  b l ( z )  a re  nucerator a n d  denominator polynomials, 

respectively, w i t h  the  s t ruc ture  of equations ( 3 )  and ( 4 ) .  

correlated signal e L ( t )  i s  then generated from 

1 

The l inear ly  

T h e  above process i s  t h e n  repeated by reapplying superposition 

to  obtain the following relat ion between 6 ( t )  and  W ( t ) :  

The cross correlat ion ident i f ica t ion  (Appendix) appl ied t o  the sequence 

5 ( t )  and N ( t )  y ie lds  the i n i t i a l  segment of pulse response sequence 

g 3 ( z ) ,  and the polynomials a , (z )  and b 3 ( ~ )  may be determined (see next 

section) such t h a t  

P i lo t  output l i nea r ly  correlated w i t h  W(t) i s  generated from the 

au toregress i ve re1 a t  i on 

Finally,  the cross correlat ion technique (Appendix) i s  appl ied t o  

6 L ( t )  and e L ( t )  to  f ind the i n i t i a l  segment of g ( k ) ,  defined by the 

coef f ic ien t  s e t  {gpK, 0 - < k < N ) ,  o f  the  p i l o t  model pulse response. 
P 

Numerator and denominator polynomials a r e  then found (see next sect ion)  

which y ie lds  
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No mu1 t i p 1  i c a t i o n  or divisions of t ransfer  functions occurs throughout 

the above procedure. 
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4. MODEL STABILITY 

As mentioned above, the pul s e  response sequence ident i f ied [g,( z )  , 

g,(z) and g ( z ) ]  will be truncated a t  some f i n i t e  lag "k" .  The 
P 

f ina l  task is t o  f i n d  a parsimonious numerator polynomial and s t ab le  

denominator polynomial which together a r e  equivalent mathematically to  

the identified pulse response. These polynomials a re  chosen t o  have the 

s t ructure  shown i n  equation (Z), which is re-arranged into the following 

form: 

kmax > s - > R 

Since the pulse response g k  is known f o r  0 < k < N, by 

equating coeff ic ients  f o r  t h e  operator "z" a t  each exponential power up  

t o  " a 1 ' ,  relationships may be found between numerator and denominator 

coeff ic ients  ak and bk. 

operator z above power ' Is" ,  for  w h i c h  the r i g h t  s ide of equation (15) 

vanishes, one obtains f o r  every j - > 0 

Moreover, by equating coeff ic ients  f o r  the 

The above re la t ion  ex is t s  for  a f in i te  b u t  l a rge  number of "j  > O", so 

projection theory ( l e a s t  squares) may be used t o  solve f o r  the coef f i -  

c ien ts  bk (0 < k - e s ) .  I' t o  the other s ide  of b+ j )  
Br inging  term "g 
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I' one may write 
b + j  1 equation (18) and divided by "g 

-r T 

I A[bl, b p Y  . . . ¶  bs] '  = [-1, . . . ¶  -11 

and the "j"th row of A i s  g iven  by 

The solution from l inear  algebra i s  

T 
$ 11 T 1 T  [bly b2, ..., b S l T  = - ( A  A ) -  A [ I $  . . . (21)  

To provide a parsimonious denominator, the  solution of equation 

( 2 1 )  i s  accepted for the lowest order I's" which has b o t h  a s t ab le  

charac te r i s t ic  equation ( i . e .  roots l e s s  than 1.0 in magnitude) and 

which y ie lds  a model pulse response s imilar  i n  shape to  the truncated 

pulse response identified from the  data.  

found the numerator a ( z )  and the gain K may be determined by once again 

matching coeff ic ients  i n  equation (17);  

Once a s tab le  denominator is 

K = 9, 

i = k  

By defining e r ror  residual t o  be the actual output time s e r i e s  

minus the p i l o t  model output s e r i e s  a t  each sample i n s t a n t ,  the g a i n  K 

may be adjusted by a suitable minimization technique t o  minimize the 

e r ro r  residual variance. Alternatively, i t  may be adjusted to  provide 

a steady s t a t e  response of unity when the i n p u t  t o  the t ransfer  function 
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is a unity pulse train, a constraint recommended by Agarwal (1980). 

If a time delay 'IT'' is to be included, the final form of G (z) will P 
be as shown in equation (Z ) ,  and the indices for the pulse responses in 

equations (17)-(23) should be incremented by the integer 'IT'' during 

identification (for example the gain K from equation (22) equals g 

identified from the data). 
T 

Validation tests may also be applied to the model. There are two 

types of tests: acceptability and statistical significance. Acceptability 

tests are comon sense checks which compare model output series verses 

actua! autocGrreTatic!!? es t ima tes  f rom the data, autocorrelation of 

residuals for whiteness properties, and checks for negligible cross- 

correlation between the noise inputs. 

Statistical significance tests may be performed after acceptability 

tests indicate the model is reasonable. Chi-squared statistics are 

available from the w(t) and v(t) prewhitened series (discussed in the 

Appendix and shown in Figure 13). Assuming one can safely neglect 

correlations beyond a lag of 20, for example, the statistics to be 

computed are, for "whiteness" of v(t) 

20 . N 

and, for uncorrelated w(t) and v(t) 
20 1 N 

(N-P) 1 {p&-q 1 w(t-k)v(t)} 
k= 1 t=k 

p = order o f  n,(z) filter 

N = total points in data set 

(24) 
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w h i c h  should ass the chi-  quared significance t e s t  f o r  degrees of 

freedom (20-p) and  (20-1-s-1) respectively (Box and Jenkins, 1976, 

p .  394). 

assumption o r  a modeling inadequacy. 

Failure of e i t h e r  significance t e s t  i s  evidence of a fau l ty  

To summarize the modified superposition technique 

a )  Find a f i n i t e  pulse sequence re la t ing  y ( t )  and W ( t )  using cross 

cor re la t ion  ident i f ica t ion  (Appendix). 

Determine a parsimonious, s tab le  t ransfer  function G 1 ( l )  which 

i s  mathematically equivalent, in the l e a s t  squares sense, t o  

the  sequence ident i f ied from the da ta  g l ( z )  [equation (9)]. 

c )  Generate time ser ies  real izat ions { y L ( t ) l ,  ( e L ( t ) )  using equations 

(10) a n d  (11). 

F i n d  a f i n i t e  pulse sequence, g 3 ( z ) ,  re lat ing 6 ( t )  and W ( t )  using 

cross correlat ion ident i f ica t ion ,  and determine a s table  t ransfer  

function G3(-c)  f o r  t h i s  pulse response (equation (14)).  

e )  Generate time real izat ion eL( t )  us ing  equation (15). 

f )  Find a f i n i t e  sequence o f  the  pulse response g ( z ) ,  from b L ( t )  

and 6 , - ( t )  using cross correlation ident i f icat ion,  and f i t  a s tab le  

p i l o t  model t ransfer  function G (T) t o  t h i s  pulse response 

(equation (16)) .  

A d j u s t  K i f  desired and val idate  the model. 

b )  

d )  

P 

P 

g )  
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5. PILOTED LABORATORY SIMULATION 

Single-channel "pi loted" simulations i n  the F1 i g h t  Simulation 

Laboratory a t  Purdue University were accomplished w i t h  a p i l o t  performing 

pursuit tracking tasks  u s i n g  a s ingle  and double integrator (K/s and 

K/s respectively) control led element dynamics. The t a s k  involved a 

command disturbance i n p u t  of a random appearing forcing function, and a 

standard p u r s u i t  (McRuer, 1974) display u s i n g  a CRT Monitor. Data se t s  

were obtained a t  a 20 her tz  sample r a t e  and 500 points were used f o r  

modeling, providing a record length of only 25 seconds (although the 

data run  itself exceeded 60 seconds). 

2 

For the  sing1 e-integrator control 1 ed element many 1 ow-order t ransfer  

functions provided excel lent  " f i t s , "  and the lowest order model i s  shown 

i n  Table 1. 

was a l so  performed by merely f i t t i n g  s ignals  { s ( t ) )  and { e ( t ) ) ,  and a 

comparison of those r e s u l t s  i n  Table 1 shows l i t t l e  variation i n  paramet- 

e r  values between d i r e c t  and ind i rec t  ident i f ica t ion  i n  this case. T h i s  

implies a small value f o r  p i lo t  injected noise r e l a t ive  t o  s t i ck  output 

(see Figure l ) ,  a reasonable deduction f o r  a "simple" controlled element 

such as K/s. An a p r io r i  selected time delay of 0.2 seconds yielded 

A "d i r ec t  ident i f icat ion" neglecting the closed-loop s t ructure  

the lowest error  residual variance and  i s  consis tent  w i t h  previous 

resul ts  (Bredderman, 1976). 

A frequency response of the ident i f ied t ransfer  function i s  shown 

i n  Figures 2 and 3 where i t  i s  c l ea r  t ha t  a delay i n  series w i t h  a pure 
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gain e f fec t ive ly  describes p i lo t  behavior. 

c lass ica l  p i lo t  model i n g  resu l t s  (McRuer, 1974). Since a conventional 

Bode in te rpre ta t ion  and analysis using these frequency responses is not 

valid over a l l  frequencies in discrete  systems z-domain analysis ,  a 

transformation of var iables  from z t o  w '  was accomplished u s i n g  

(Franklin and Powell, 1980, p .  114) 

T h i s  i s  consistent w i t h  

2 tan __ W A  
2 v - -  a 

Figures 4 and 5 show the transformed frequency ( v )  response i n  the 

w '  domain, where a conventional Bode interpretat ion i s  allowed. By 

comparing 

able  difference between the  responses over the frequency range o f  i n t e re s t  

(0 < w < 25 rps). 

Figures 4 and 5 with Figures 2 and 3 ,  one can f i n d  no discern- 

The  time h i s t o r i e s  a r e  shown in Figure 6. Only the f i r s t  500 points 

(25 seconds) were used to  develop the model , and the model o u t p u t  remains 

reasonable accurate beyond th i s  time. T h i s  ve r i f i e s  s t a t iona r i ty  and 

avoids an ove r f i t  (Kashap, 1976), which would be evidenced by increased 

e r ro r  residual when the model is  applied. t o  data independent of  model 

derivation ( i n  this case beyond 25 seconds). 

For the  double-integrator control 1 ed element a more complex t ransfer  

function was ident i f ied  and i s  shown i n  Table 2 f o r  two values of a 

pr ior i  selected time delay (0.05 seconds and 0.2 seconds). 

From the frequency response plot i n  Figure 7 there  is  some resonance 

near 2.0 Hz. 

d i f f e ren t  values of time delay (0.2 and 0.05 seconds respectively). 

The phase plots a r e  shown i n  Figures 8 and 9 f o r  two 
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The transformation t o  w '  domain yields  on discernable difference from 

these responses and  they a r e  not shown. 

In contrast  t o  control o f  a "simple" K/s ,  the "best f i t "  (minimizes. 

residual e r ro r  variance) was obtained when time delay was s e t  t o  0.-05 

seconds f o r  control o f  K/s . The phase contribution from only the 

poles and zeros of the d iscre te  t r ans fe r  function is  apparent as time 

delay changes between 0.2 seconds and 0.05 seconds, as  may be seen by 

the phase plots  of Figures 10 and 11 i n  which the pure time delay has 

been removed from the discrete  t r ans fe r  function. 

pure time delay on the model exposes the considerable lead generation 

from the t ransfer  function poles and zeros. 

n o t  as  apparent when pure time delay i s  reduced f o r  the "best time 

domain" f i t ,  b u t  the result ing 0.05 seconds might be judged too f a s t  

t o  assoc ia te  w i t h  a lumped physiological delay f o r  a human operator. 

A possible explanation is unmodeled p i l o t  ant ic ipat ion;  t ha t  i s ,  a 

possible ant ic ipatory loop closure not accounted f o r  i n  Figure 1. 

2 

Selecting the larger  

T h i s  lead generation i s  

Further evidence of this  is provided i n  the time his tory f o r  the 

best  f i t t i n g  model i n  Figure 12. Note t h a t  a seasonal p i l o t  residual 

(where p i l o t  output "leads" model output) occurs d u r i n g  some of the 

longer in te rva ls  o f  lrrge slope. T h i s  could be caused by momentary 

ant ic ipatory behavior ar is ing from the "pursui t"  display including 

commanded i n p u t ,  a fac tor  n o t  accounted f o r  i n  a time invariant model. 

Thus  i n  determining the "best" model u s i n g  time ser ies  analysis,  the 

purpose of the model must be g i v e n  a s  much consideration as t e s t s  f o r  

"best f i t .  I' 
2 In summary f o r  the K/s control led element, an a pr ior i  time delay 

i n  series w i t h  a r a t e  sensi t ive gain describes "pi lot"  behavior over his 
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usable bandwidth, i n  agreement w i t h  c l a s s i ca l  r e su l t s  (McRuer, 1974) .  

When pure time delay is  not set  a pr ior i  b u t  allowed to  vary i n  obtaining 

the "best time domain f i t , "  the minimization o f  a n  error variance c r i t e r -  

ion r e su l t s  i n  a math model where the time delay i s  perhaps too small 

be associated w i t h  physiological operator delays. T h i s  case is associated 

w i t h  a pursui t  t a s k  i n  w h i c h  the command a s  well a s  the plant output i s  

d i  spl ayed . 
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6. CONCLUSIONS 

A modified superposition technique was described for obtaining a 

parsimonious and ' s table  d iscre te  t r ans fe r  function, along w i t h  s t a t i s t i -  

cal tests for model validation. Results provide evidence tha t  the time 

se r i e s  technique appears feas ib le  t o  imp1 ement on ''short'' data records. 

The ana!yst weds, hcwever, t o  determsne t he  cr'terim fer a "best t i m e  

domain f i t "  which allows association of parameter values, such as  pure 

time delay, w i t h  actual physical and physiological constraints.  Season- 

a l i t i e s  i n  p i lo t  res idual ,  possibly caused by anticipatory behavior, 

were observed as f i r s t  noted by Shinners (1974), and are  n o t  well modeled 

w i t h  a time invariate  model. 

Future work should  concentrate on the full  potential of these 

time s e r i e s  models f o r  analyses, especial ly  their a b i l i t y  t o  provide 

s tab le  a n d  accurate power spectral densities, and on t h e i r  application 

t o  mu1 ti-channed closed-loop p i l o t  modeling. 
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8 .  APPENDIX: Cross Correlation Identification 

(Box and Jenkins, 1976) 

Given the situation in Figure 13, the goal is to find the pulse 

response relating Y(t) and W(t), which is prewhitenable by nw(z). The 

prewhitening is accompl ished by applying the Levinson-Durbin algorithm 

as given by Kay and Marpie ( i%i,  pp. 1388-i389). 

order of the blocks in the forward path of Figure 13, and multiplying 

each signal at the summer by nil(z), the following equation results: 

Ey reversing the 

G(z)w(t) + n,'(z)V(t) = B(t) (28 1 

Now multiply equation (28) by w(t-k) and take the expectation, recalling 

that w(t) is uncorrelated by assumption with v(t): 

G ( z )  E[w(t)w(t-k)] = E[B(t)w(t-k)] (30) 

By expanding G(z) using shift properties o f  z one obtains 

k > O  

Since w(t) is an independent, identically distributed sequence of random 

numbers with variance C J ~ ,  one obtains for every lag k 



Convent ional  e s t i m a t i o n  r e l a t i o n s  may now be used t o  es t imate  the  terms 

i n  equa t ion  (32) and so l ve  fo r  gk;  f o r  example, f rom Box and Jenkins 

(1976, pp.  32-33) one ob ta ins  

I 
I 
I 
I 
I 
1 

which determines t h e  pulse response sequence es t imate  ik. 
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K -T ( l+a lz-l 

P ( 1+blzp-l  ) 
Model Structure G ( z )  = 

Signal t o  noise ra t io  z 50 
N = 500 points  A = 0.05 seconds T = 4 (0.2 seconds) 

- 

Pa rarneter 

K* 
P 

K** 
P 

bl 

- 

No a i f i e a 
Superposition 
A 

0.64 

0.79 

0.71 

0.32 

I 

D i  r ec t  
Ident i f ica t ion  

0.69 

0.72 

0.69 

0.37 

* Gain which minimizes e r r o r  residual variance 

** Gain yields steady s t a t e  step response of unity 



Kz-'( l+a  lz-l ) 
Model S t r u c t u r e  G ( z )  = 

P ( l+blz-1+b2z-2+b 3 z - ~ )  

S igna l  t o  noise r a t i o  30 
14 = 500 A = 0.05 seconds T = 4 (0 .2  seconds)  

I 
Parameter  I T = 0.05 sec 

0.03 

0.033 

10.9 

- 1.42 

0.91 

- 0.1 

0.14 

0.64 +j 0.57 

T = 0.2  seconds 

0.89 

1.22 

-0.67 

-1.41 

0.88 

-0.06 

0.08 

0.67 k j  0.57 

* Gain which minimizes e r r o r  r e s i d u a l  v a r i a n c e  

** Gain y i e l d s  s teady  s t a t e  s tep response  o f  u n i t y  
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